#start with clean workspace
rm(list=ls())
getwd()
#> [1] "C:/Users/ninab/OneDrive/Documenten/GitHub/labjournal"
packages
library(data.table)
library(tidyverse)
require(stringi)
require(Rsiena)
require(igraph)
#load dataobjects
load("./data/descriptives/RU_dfv2.RData")
Model 1: ethnicity
ego
divego.divnet.lm<-lm(soc_df$div.net ~ soc_df$div.ego)
summary(divego.divnet.lm)
#>
#> Call:
#> lm(formula = soc_df$div.net ~ soc_df$div.ego)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -34.525 -21.930 -7.890 8.006 78.070
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 34.53 13.94 2.476 0.0196 *
#> soc_df$div.ego -12.59 14.98 -0.841 0.4075
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 27.89 on 28 degrees of freedom
#> (2 observations deleted due to missingness)
#> Multiple R-squared: 0.02463, Adjusted R-squared: -0.0102
#> F-statistic: 0.7071 on 1 and 28 DF, p-value: 0.4075
Model 2: year first
publication
pubfirst.divnet.lm<-lm(soc_df$div.net ~ soc_df$pub_first)
summary(pubfirst.divnet.lm)
#>
#> Call:
#> lm(formula = soc_df$div.net ~ soc_df$pub_first)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -31.349 -20.353 -2.288 10.293 70.664
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -1322.809 710.280 -1.862 0.0731 .
#> soc_df$pub_first 0.671 0.354 1.896 0.0684 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 26.58 on 28 degrees of freedom
#> (2 observations deleted due to missingness)
#> Multiple R-squared: 0.1137, Adjusted R-squared: 0.08209
#> F-statistic: 3.594 on 1 and 28 DF, p-value: 0.06837
Model 3: gender
gender.divnet.lm<-lm(soc_df$div.net ~ soc_df$gender4)
summary(gender.divnet.lm)
#>
#> Call:
#> lm(formula = soc_df$div.net ~ soc_df$gender4)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -23.81 -23.41 -8.13 13.53 76.59
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 23.813 7.291 3.266 0.00288 **
#> soc_df$gender4 -0.406 10.311 -0.039 0.96887
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 28.24 on 28 degrees of freedom
#> (2 observations deleted due to missingness)
#> Multiple R-squared: 5.537e-05, Adjusted R-squared: -0.03566
#> F-statistic: 0.001551 on 1 and 28 DF, p-value: 0.9689
Model 4: ethnicity ego
+ year first publication + gender
final.divnet.lm<-lm(soc_df$div.net ~ soc_df$div.ego + soc_df$pub_first + soc_df$gender4)
summary(final.divnet.lm)
#>
#> Call:
#> lm(formula = soc_df$div.net ~ soc_df$div.ego + soc_df$pub_first +
#> soc_df$gender4)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -33.338 -20.712 -4.512 12.534 63.126
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -1750.5010 863.7535 -2.027 0.0531 .
#> soc_df$div.ego -7.5129 14.9225 -0.503 0.6189
#> soc_df$pub_first 0.8841 0.4278 2.066 0.0489 *
#> soc_df$gender4 13.4445 11.5801 1.161 0.2562
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 26.81 on 26 degrees of freedom
#> (2 observations deleted due to missingness)
#> Multiple R-squared: 0.1627, Adjusted R-squared: 0.0661
#> F-statistic: 1.684 on 3 and 26 DF, p-value: 0.1948
LS0tDQp0aXRsZTogIlJVIHJlZ3Jlc3Npb24gYW5hbHlzaXMiDQphdXRob3I6ICJieTogTmluYSBCcmFudGVuIg0KYmlibGlvZ3JhcGh5OiByZWZlcmVuY2VzLmJpYg0KLS0tDQoNCg0KDQpgYGB7ciwgaW5zdGFsbCByZW1vdGVseSwgZ2xvYmFsc2V0dGluZ3MsIGVjaG89RkFMU0UsIHdhcm5pbmc9RkFMU0UsIHJlc3VsdHM9J2hpZGUnLCBldmFsPUZBTFNFfQ0KaW5zdGFsbC5wYWNrYWdlcygicmVtb3RlcyIpDQpyZW1vdGVzOjppbnN0YWxsX2dpdGh1Yigicmxlc3VyL2tsaXBweSIpDQpgYGAgDQoNCmBgYHtyLCBnbG9iYWxzZXR0aW5ncywgZWNobz1GQUxTRSwgd2FybmluZz1GQUxTRSwgcmVzdWx0cz0naGlkZSd9DQpsaWJyYXJ5KGtuaXRyKQ0KbGlicmFyeShyZ2wpDQoNCmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkNCm9wdHNfY2h1bmskc2V0KHRpZHkub3B0cz1saXN0KHdpZHRoLmN1dG9mZj0xMDApLHRpZHk9VFJVRSwgd2FybmluZyA9IEZBTFNFLCBtZXNzYWdlID0gRkFMU0UsY29tbWVudCA9ICIjPiIsIGNhY2hlPVRSVUUsIGNsYXNzLnNvdXJjZT1jKCJ0ZXN0IiksIGNsYXNzLm91dHB1dD1jKCJ0ZXN0MiIpKQ0Kb3B0aW9ucyh3aWR0aCA9IDEwMCkNCnJnbDo6c2V0dXBLbml0cigpDQoNCg0KDQpjb2xvcml6ZSA8LSBmdW5jdGlvbih4LCBjb2xvcikge3NwcmludGYoIjxzcGFuIHN0eWxlPSdjb2xvcjogJXM7Jz4lczwvc3Bhbj4iLCBjb2xvciwgeCkgfQ0KDQpgYGANCg0KYGBge3Iga2xpcHB5LCBlY2hvPUZBTFNFLCBpbmNsdWRlPVRSVUV9DQprbGlwcHk6OmtsaXBweShwb3NpdGlvbiA9IGMoJ3RvcCcsICdyaWdodCcpKQ0KI2tsaXBweTo6a2xpcHB5KGNvbG9yID0gJ2RhcmtyZWQnKQ0KI2tsaXBweTo6a2xpcHB5KHRvb2x0aXBfbWVzc2FnZSA9ICdDbGljayB0byBjb3B5JywgdG9vbHRpcF9zdWNjZXNzID0gJ0RvbmUnKQ0KYGBgDQoNCmBgYHtyfQ0KI3N0YXJ0IHdpdGggY2xlYW4gd29ya3NwYWNlIA0Kcm0obGlzdD1scygpKQ0KZ2V0d2QoKQ0KYGBgDQoNCiMgcGFja2FnZXMNCg0KYGBge3J9DQpsaWJyYXJ5KGRhdGEudGFibGUpIA0KbGlicmFyeSh0aWR5dmVyc2UpIA0KcmVxdWlyZShzdHJpbmdpKQ0KcmVxdWlyZShSc2llbmEpDQpyZXF1aXJlKGlncmFwaCkNCg0KYGBgDQoNCmBgYHtyfQ0KI2xvYWQgZGF0YW9iamVjdHMNCmxvYWQoIi4vZGF0YS9kZXNjcmlwdGl2ZXMvUlVfZGZ2Mi5SRGF0YSIpDQpgYGANCg0KIyBNb2RlbCAxOiBldGhuaWNpdHkgZWdvDQoNCmBgYHtyfQ0KZGl2ZWdvLmRpdm5ldC5sbTwtbG0oc29jX2RmJGRpdi5uZXQgfiBzb2NfZGYkZGl2LmVnbykNCnN1bW1hcnkoZGl2ZWdvLmRpdm5ldC5sbSkNCmBgYA0KIyBNb2RlbCAyOiB5ZWFyIGZpcnN0IHB1YmxpY2F0aW9uDQoNCmBgYHtyfQ0KcHViZmlyc3QuZGl2bmV0LmxtPC1sbShzb2NfZGYkZGl2Lm5ldCB+IHNvY19kZiRwdWJfZmlyc3QpDQpzdW1tYXJ5KHB1YmZpcnN0LmRpdm5ldC5sbSkNCmBgYA0KDQojIE1vZGVsIDM6IGdlbmRlcg0KYGBge3J9DQpnZW5kZXIuZGl2bmV0LmxtPC1sbShzb2NfZGYkZGl2Lm5ldCB+IHNvY19kZiRnZW5kZXI0KQ0Kc3VtbWFyeShnZW5kZXIuZGl2bmV0LmxtKQ0KYGBgDQojIE1vZGVsIDQ6IGV0aG5pY2l0eSBlZ28gKyB5ZWFyIGZpcnN0IHB1YmxpY2F0aW9uICsgZ2VuZGVyDQoNCmBgYHtyfQ0KZmluYWwuZGl2bmV0LmxtPC1sbShzb2NfZGYkZGl2Lm5ldCB+IHNvY19kZiRkaXYuZWdvICsgc29jX2RmJHB1Yl9maXJzdCArIHNvY19kZiRnZW5kZXI0KQ0Kc3VtbWFyeShmaW5hbC5kaXZuZXQubG0pDQpgYGANCg0K