#start with clean workspace
rm(list=ls())
getwd()
#> [1] "C:/Users/ninab/OneDrive/Documenten/GitHub/labjournal"
packages
library(data.table)
library(tidyverse)
require(stringi)
require(Rsiena)
require(igraph)
#load dataobjects
load("./data/descriptives/UU_dfv2.RData")
Model 1: ethnicity
ego
divego.divnet.lm<-lm(soc_df$div.net ~ soc_df$div.ego)
summary(divego.divnet.lm)
#>
#> Call:
#> lm(formula = soc_df$div.net ~ soc_df$div.ego)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -52.759 -10.837 1.303 9.003 51.303
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 52.759 7.625 6.919 9.25e-08 ***
#> soc_df$div.ego -24.062 9.133 -2.635 0.013 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 24.11 on 31 degrees of freedom
#> Multiple R-squared: 0.1829, Adjusted R-squared: 0.1566
#> F-statistic: 6.941 on 1 and 31 DF, p-value: 0.01303
Model 2: year first
publication
pubfirst.divnet.lm<-lm(soc_df$div.net ~ soc_df$pub_first)
summary(pubfirst.divnet.lm)
#>
#> Call:
#> lm(formula = soc_df$div.net ~ soc_df$pub_first)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -41.360 -13.023 -6.090 9.686 57.389
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -800.2789 681.4321 -1.174 0.249
#> soc_df$pub_first 0.4171 0.3398 1.227 0.229
#>
#> Residual standard error: 26.05 on 31 degrees of freedom
#> Multiple R-squared: 0.04633, Adjusted R-squared: 0.01557
#> F-statistic: 1.506 on 1 and 31 DF, p-value: 0.229
Model 3: gender
gender.divnet.lm<-lm(soc_df$div.net ~ soc_df$gender4)
summary(gender.divnet.lm)
#>
#> Call:
#> lm(formula = soc_df$div.net ~ soc_df$gender4)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -39.945 -11.375 -3.417 9.443 60.055
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 39.945 7.342 5.441 6.07e-06 ***
#> soc_df$gender4 -6.528 9.431 -0.692 0.494
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 26.47 on 31 degrees of freedom
#> Multiple R-squared: 0.01522, Adjusted R-squared: -0.01655
#> F-statistic: 0.4791 on 1 and 31 DF, p-value: 0.494
Model 4: ethnicity ego
+ year first publication + gender
final.divnet.lm<-lm(soc_df$div.net ~ soc_df$div.ego + soc_df$pub_first + soc_df$gender4)
summary(final.divnet.lm)
#>
#> Call:
#> lm(formula = soc_df$div.net ~ soc_df$div.ego + soc_df$pub_first +
#> soc_df$gender4)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -50.403 -13.919 2.265 9.642 53.316
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -232.8789 675.3779 -0.345 0.7327
#> soc_df$div.ego -24.0096 9.8023 -2.449 0.0206 *
#> soc_df$pub_first 0.1452 0.3354 0.433 0.6683
#> soc_df$gender4 -9.1613 8.7939 -1.042 0.3061
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 24.36 on 29 degrees of freedom
#> Multiple R-squared: 0.22, Adjusted R-squared: 0.1394
#> F-statistic: 2.727 on 3 and 29 DF, p-value: 0.06218
LS0tDQp0aXRsZTogIlVVIHJlZ3Jlc3Npb24gYW5hbHlzaXMiDQphdXRob3I6ICJieTogTmluYSBCcmFudGVuIg0KYmlibGlvZ3JhcGh5OiByZWZlcmVuY2VzLmJpYg0KLS0tDQoNCg0KDQpgYGB7ciwgaW5zdGFsbCByZW1vdGVseSwgZ2xvYmFsc2V0dGluZ3MsIGVjaG89RkFMU0UsIHdhcm5pbmc9RkFMU0UsIHJlc3VsdHM9J2hpZGUnLCBldmFsPUZBTFNFfQ0KaW5zdGFsbC5wYWNrYWdlcygicmVtb3RlcyIpDQpyZW1vdGVzOjppbnN0YWxsX2dpdGh1Yigicmxlc3VyL2tsaXBweSIpDQpgYGAgDQoNCmBgYHtyLCBnbG9iYWxzZXR0aW5ncywgZWNobz1GQUxTRSwgd2FybmluZz1GQUxTRSwgcmVzdWx0cz0naGlkZSd9DQpsaWJyYXJ5KGtuaXRyKQ0KbGlicmFyeShyZ2wpDQoNCmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkNCm9wdHNfY2h1bmskc2V0KHRpZHkub3B0cz1saXN0KHdpZHRoLmN1dG9mZj0xMDApLHRpZHk9VFJVRSwgd2FybmluZyA9IEZBTFNFLCBtZXNzYWdlID0gRkFMU0UsY29tbWVudCA9ICIjPiIsIGNhY2hlPVRSVUUsIGNsYXNzLnNvdXJjZT1jKCJ0ZXN0IiksIGNsYXNzLm91dHB1dD1jKCJ0ZXN0MiIpKQ0Kb3B0aW9ucyh3aWR0aCA9IDEwMCkNCnJnbDo6c2V0dXBLbml0cigpDQoNCg0KDQpjb2xvcml6ZSA8LSBmdW5jdGlvbih4LCBjb2xvcikge3NwcmludGYoIjxzcGFuIHN0eWxlPSdjb2xvcjogJXM7Jz4lczwvc3Bhbj4iLCBjb2xvciwgeCkgfQ0KDQpgYGANCg0KYGBge3Iga2xpcHB5LCBlY2hvPUZBTFNFLCBpbmNsdWRlPVRSVUV9DQprbGlwcHk6OmtsaXBweShwb3NpdGlvbiA9IGMoJ3RvcCcsICdyaWdodCcpKQ0KI2tsaXBweTo6a2xpcHB5KGNvbG9yID0gJ2RhcmtyZWQnKQ0KI2tsaXBweTo6a2xpcHB5KHRvb2x0aXBfbWVzc2FnZSA9ICdDbGljayB0byBjb3B5JywgdG9vbHRpcF9zdWNjZXNzID0gJ0RvbmUnKQ0KYGBgDQoNCg0KYGBge3J9DQojc3RhcnQgd2l0aCBjbGVhbiB3b3Jrc3BhY2UgDQpybShsaXN0PWxzKCkpDQpnZXR3ZCgpDQpgYGANCiMgcGFja2FnZXMNCg0KYGBge3J9DQpsaWJyYXJ5KGRhdGEudGFibGUpIA0KbGlicmFyeSh0aWR5dmVyc2UpIA0KcmVxdWlyZShzdHJpbmdpKQ0KcmVxdWlyZShSc2llbmEpDQpyZXF1aXJlKGlncmFwaCkNCg0KYGBgDQpgYGB7cn0NCiNsb2FkIGRhdGFvYmplY3RzDQpsb2FkKCIuL2RhdGEvZGVzY3JpcHRpdmVzL1VVX2RmdjIuUkRhdGEiKQ0KYGBgDQoNCiMgTW9kZWwgMTogZXRobmljaXR5IGVnbw0KDQpgYGB7cn0NCmRpdmVnby5kaXZuZXQubG08LWxtKHNvY19kZiRkaXYubmV0IH4gc29jX2RmJGRpdi5lZ28pDQpzdW1tYXJ5KGRpdmVnby5kaXZuZXQubG0pDQpgYGANCiMgTW9kZWwgMjogeWVhciBmaXJzdCBwdWJsaWNhdGlvbg0KDQpgYGB7cn0NCnB1YmZpcnN0LmRpdm5ldC5sbTwtbG0oc29jX2RmJGRpdi5uZXQgfiBzb2NfZGYkcHViX2ZpcnN0KQ0Kc3VtbWFyeShwdWJmaXJzdC5kaXZuZXQubG0pDQpgYGANCg0KIyBNb2RlbCAzOiBnZW5kZXINCmBgYHtyfQ0KZ2VuZGVyLmRpdm5ldC5sbTwtbG0oc29jX2RmJGRpdi5uZXQgfiBzb2NfZGYkZ2VuZGVyNCkNCnN1bW1hcnkoZ2VuZGVyLmRpdm5ldC5sbSkNCmBgYA0KIyBNb2RlbCA0OiBldGhuaWNpdHkgZWdvICsgeWVhciBmaXJzdCBwdWJsaWNhdGlvbiArIGdlbmRlcg0KDQpgYGB7cn0NCmZpbmFsLmRpdm5ldC5sbTwtbG0oc29jX2RmJGRpdi5uZXQgfiBzb2NfZGYkZGl2LmVnbyArIHNvY19kZiRwdWJfZmlyc3QgKyBzb2NfZGYkZ2VuZGVyNCkNCnN1bW1hcnkoZmluYWwuZGl2bmV0LmxtKQ0KYGBgDQoNCg==